[BR03]Philip R. Bevington and D. Keith Robinson. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston, third edition, 2003.
[BS01]Somendra M. Bhattacharjee and Flavio Seno. A measure of data collapse for scaling. Journal of Physics A: Mathematical and General, 34(33):6375–6380, August 2001. URL:, doi:10.1088/0305-4470/34/33/302.
[BH10]Kurt Binder and Dieter W. Heermann. Monte Carlo Simulation in Statistical Physics. Springer, Berlin, Heidelberg, 2010. URL:, doi:10.1007/978-3-642-03163-2.
[FB72]Michael E. Fisher and Michael N. Barber. Scaling theory for Finite-Size effects in the critical region. Physical Review Letters, 28(23):1516–1519, 1972. URL:, doi:10.1103/physrevlett.28.1516.
[HH04]Jérôme Houdayer and Alexander Hartmann. Low-temperature behavior of two-dimensional gaussian ising spin glasses. Physical Review B, 70(1):014418+, 2004. URL:, doi:10.1103/physrevb.70.014418.
[JOP1–]Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python. 2001–. URL:
[KI93]Naoki Kawashima and Nobuyasu Ito. Critical behavior of the Three-Dimensional ±j model in a magnetic field. Journal of the Physical Society of Japan, 62(2):435–438, 1993. URL:, doi:10.1143/jpsj.62.435.
[KLT03]Tamara G. Kolda, Robert M. Lewis, and Virginia Torczon. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Review, 45(3):385–482, 2003. URL:, doi:10.1137/s003614450242889.
[LRWW98]Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1):112–147, 1998. URL:, doi:10.1137/s1052623496303470.
[Mel09]O. Melchert. - a program for automatic finite-size scaling analyses: A user’s guide. October 2009. URL:, arXiv:0910.5403.
[NM65]J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313, 1965. URL:, doi:10.1093/comjnl/7.4.308.
[NB99]M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford University Press, 1999. URL:
[Oli07]Travis E. Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):10–20, 2007. URL:, doi:10.1109/mcse.2007.58.
[PCB02]C. J. Price, I. D. Coope, and D. Byatt. A convergent variant of the Nelder–Mead algorithm. Journal of Optimization Theory and Applications, 113(1):5–19, 2002. URL:\%253a1014849028575, doi:10.1023/a\%253a1014849028575.
[SN09]Saša Singer and John Nelder. Nelder-Mead algorithm. Scholarpedia, 4(7):2928+, 2009. URL:, doi:10.4249/scholarpedia.2928.
[SS04]Saša Singer and Sanja Singer. Efficient implementation of the Nelder-Mead search algorithm. Applied Numerical Analysis & Computational Mathematics, 1(2):524–534, 2004. URL:, doi:10.1002/anac.200410015.
[SHH62]W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics, 4(4):441–461, 1962. URL:, doi:10.1080/00401706.1962.10490033.
[Str11]Tilo Strutz. Data fitting and uncertainty : a practical introduction to weighted least squares and beyond. Vieweg + Teubner, Wiesbaden, 2011. URL:
[WBJS08]Sandro Wenzel, Elmar Bittner, Wolfhard Janke, and Adriaan M. J. Schakel. Percolation of vortices in the 3D abelian lattice higgs model. Nuclear Physics B, 793:344–361, 2008. URL:, doi:10.1016/j.nuclphysb.2007.10.024.